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ABSTRACT

The response and failure mechanism of circular aluminum panels and S-2 glass fiber
/ polyester resin matrix composite panels in response to underwater shock loading were
investigated. The response of the aluminum panels was compared to the characteristic
response of thin circular metal plates subjected to shock loading with a good degree of
correlation. The response of the aluminum panels was then used as a reference with
which to compare the response of the composite panels.

The response and failure mechanism of the composite panels were found to be
highly dependent on the boundary conditions of the panel. For the conditions of this test
series, in which the panel boundary was allowed limited motion in the radial direction,
the response of the composite panel was determined to be generally similar to the
response of the aluminum panels, mitigated by the high strength in tension of the glass
fiber. The failure mechanism appeared to be localized matrix failure in compression due
to the high circumferential stresses generated as the panel was transversely deflected by
the shock wave. The radial motion of the panel boundary appears to have exascerbated

the circumferential compressive s“:csses.
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I. INTRODUCTION

Fiber-reinforced laminated composite materials, with their high strength to weight
and stiffness to weight ratios, are rapidly finding uses in all aspects of mechanical design.
The ability to control the mechanical properties of the material by altering the sequence
of the lamina or the orientation of the fibers in each of the laminae in the material allows
them to be -engineered to meet many specific applications
[Ref. 1: pp. 20,21]. The two characteristics that have attracted the attention of marine
designers and have made them ideal for application to many types of underwater
structures are the corrosion resistance and the non-magnetic properties of many
composites.

Underwater shock loading is one of the least forgiving environments to which any
material can be subjected. Significant research was conducted into the effects of
underwater shock loading on metal structures as a result of World War II. Little, if any,
research has been published on the effects of underwater shock loading on composite
materials. This thesis, hopefully, will provide some information pertaining to the dynamic
response and failure mechanisms of composite plates or panels that will be useful for the
designer of marine structures that may experience shock loading.

In spite of the effort devoted to the development of composite material failure
theories and to their correlation with test data, no single theory is available wl.mich can

adequately predict the failure mechanism of fiber reinforced composite materials. Those




theories that are easy to apply (primarily extensions of isotropic failure theory) are valid
only for cases of special orthotropy. Those theories not limited to special orthotropy must
take into account the directional properties of the material, which is not always available.
Thus they suffer from the need for elaborate testing required to determine the various
interaction coefficients for the materials. [Ref. 2: p. 76]

The purpose of this research is to experimentally investigate the dynamic response
and failure mechanisms of circular composite panels subjected to underwater shock
loading. Initially, the response of circular aluminum panels will be measured and
compared to typical response characteristics described in the historical studies. The
response of the composite panels to similar loading conditions will then be measured and
compared to the aluminum panel response. The measured response of the composite
panels will then be interpreted to determine the mode of failure of the panels. The
information gained by this research will prove useful in determining when and how

failure in composite materials will occur.




II. THEORETICAL BACKGROUND

A. THE UNDERWATER SHOCK WAVE

An underwater explosion produces an essentially discontinuous pressure wave or
shock wave in the surrounding water. In the immediate vicinity of the explosive charge
the peak pressure of this shock wave can reach 2 x 10° psi. Initially, the shock wave
propagates radially outward from the explosion at speed several times the speed of sound
in water. The velocity of the shock wave decreases rapidly such that outside of about 10
times the explosive charge radius the disturbance is essentially traveling at sonic velocity.
[Ref 3: pp. 3-7]

In a working range of 10 to 100 times the charge radius, the peak pressure of the
shock wave is found to decay as a logarithmic function of distance. Outside of the
working range the decay of peak pressure is proportional to the inverse of the distance
[Ref. 3: pp. 124-126]. At any given point in the working range the pressure profile
sensed is essentially a step increase to the peak pressure followed by an exponential decay
with time until the pressure has dropped to approximately one third of the peak pressure.
After this point the pressure continues to decay, but at a slower rate. Additionally, as the
shock wave radiates away from the explosion, it tends to gradually broaden in duration
as it decreases in magnitude. Figure 1 illustrates the time and distance dependencies of

the shock wave. [Ref. 3: pp. 3-7]
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Figure 1. Time / Distance Dependencies of the Shock Wave.




The kinetic energy contained in the gas bubble generated by the explosion causes
the bubble to expand until the internal pressure of the bubble balances the hydrostatic
pressure and surface tension forces acting on the bubble. Inertia forces within the bubble
cause an additional amount of expansion resulting in an internal pressure of the bubble
much less than the hydrostatic pressure surrounding it. At this point the gas bubble
begins to collapse in on itself. Depending on the depth and magnitude of the underwater
explosion, secondary pressure pulses can be generated by the contraction and subsequent
re-expansion of the bubble as shown in Figure 2. The expansion / contraction cycle of
the bubble is repeated until all of the energy contained in the bubble is expended or the
bubble reaches the surface. The peak pressure associated with these secondary pulses
diminishes rapidly with each successive pulse. Typically, only the first pulse, which may
contain 10% to 20% of the energy of the initial shock wave, is of any importance. The
secondary pressure pulses may be avoided if the explosion occurs at a shallow depth so
that the bubble vents to the atmosphere prior to its initial contraction. [Ref. 3: pp. 10,

270-273]

1. Empirical Relationships
Research inspired by World War II resulted in a set of empirical equations that
could be used to determine the pressures, decay constants and bubble parameters for
underwater explosions generated by different explosives [Ref. 4: pp 1087-1091]. The
equations for peak pressure of the shock wave (P_,,) as a function of radial stand off
distance, the shock wave decay constant (8), pressure as a function of time (P(t)), and the

maximum radius of the initial gas bubble (1,,,) are shown below.
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Where: W = weight of the explosive in pounds.
R = stand off distance in feet.
t = elapsed time since explosion.
t, = arrival time of the shock wave.
D = depth of the explosive in feet.
K,, K,, K,, A,, A, = constant parameters determined by the type of
explosive.
Values of the constant parameters for trinitrotoluene (TNT) are shown in Table I [Ref.

S: p. 46].

2. Underwater Shock Wave Propagation

One of the main differences between the propagation of underwater shock
waves and the propagation of underwater acoustic waves lies in the manner in which
pressure effects the density of the water. Water can no longer be considered an
incompressible substance when large pressures are involved. One of the results of the
effect of pressure on density is that the velocity of a shock wave is not constant, but is
always greater than and asymptotically approaching the acoustic velocity of water. Some
additional differences are noted when the shock wave interacts with a rigid interface, but
these effects are negligible for peak pressures less than 14,000 psi {Ref. 3: pp. 55.56].
For the remainder of this analysis, the propagation of underwater shock waves will treated

in the same manner as the propagation of underwater acoustic waves.




Table I. Shock Wave Equation Parameters for TNT.

K, A K, A,

22,505 1.180 0.058 -0.185

Aside from the direct shock wave resulting from the explosion, an underwater
target will also experience pressure pulses resulting from the interaction of the shock
wave with any fluid boundaries. Two boundary interactions that are always present are
the surface interaction and the bottom interaction. The surface of the water can be
modeled as a free surface and in most cases the bottom can be successfully be modeled
as a rigid boundary.

A compressive pressure wave striking a free surface is reflected in
accordance with Snell’s Law as a rarefaction wave of the same magnitude [Ref. 6: p.
2.4-3]. As this rarefaction wave propagates into the water it travels through regions in
the water some short time after the direct shock wave has passed through. The addition
of the compressive direct shock wave and the surface reflected rarefaction wave results
in a truncation of the direct shock wave pressure profile, termed the surface cut off, that
is illustrated in Figure 3. It is possible for the resultant pressure following the surface cut
off to approach the vapor pressure of the water, resulting in bulk cavitation. The direct
shock wave is also reflected from a rigid boundary. However, in this case only the

propagation direction is altered with all other characteristics of the shock wave




remaining unchanged. Figure 4 illustrates the potential pressure profile at a given location

resulting from the direct shock wave, surface cut off, bottom bounce, and bubble pulse.

Pmax

Surface Cut Off

Figure 3. A Surface Cut Off Reaction.

Pmax
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g / st B7bble Pulse
[«
PP }-= - ===

P .
v Time

Surface Cut Off

Figure 4. Typical Pressure Profile From an Underwater Explosion.




The arrival times of the various shock and pressure waves at the target location
can be calculated by determining the ray path distance from the charge to the target for
each shock or pressure wave. The ray path distance is then divided by the speed of sound
in water to obtain the propagation time. A convenient method for determining the ray

path distance for reflected waves is to utilize image charges as shown in Figure §.

Stand Off
)

Y

e
- & Image Charge
)
'
I

P
® |mage Charge

Figure 5. Image Charge Geometry.

B. IMPULSE RESPONSE OF A FLAT CIRCULAR PLATE
The impulse response of flat circular plates is a complex function involving impulse
magnitude, plate dimensions, material properties and the plate boundary conditions. Some

understanding of the process can be achieved by analyzing the impulse response of an

10
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infinite flat plate, the Taylor plate model [Ref 7: pp. 292-294], and then examining the
results of a series of underwater explosion effects tests conducted during and after World

War II.

1. Impulse Response of an Infinite Flat Plate
Consider the situation depicted in Figure 6. A thin infinite plate with mass per

unit area m is simultaneously subjected to the incident planar pressure wave P, and the

reflected planar pressure wave P,. The incident pressure P, is of the form

PP, exp’-_') ®
\

A\

\4

Ue——t—>x

Figure 6. Response of an Infinite Plate to an Underwater Shock.
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If the water is assumed to be incompressible, the incident and reflected pressures, P, and

P,, can be related to the fluid particle velocity in the respective pressure waves by

P~ ®)
pc
and
p,- -2 @
pc

where p and ¢ are the density and sonic velocity of the fluid. At the surface of the plate

the plate velocity U can be expressed as

U - U+l ®)

assuming no initial cavitation on the plate.
For an air backed plate, the effect of the air on the motion of the plate is
negligible compared to the effect of the water acting on the face of the plate. The

equation of motion for the infinite plate can be written as

12




me - P . P, ©

or substituting equations (7) and (8) for P,

m%t‘-’. - 2P, + Upc 0)

Assuming that the plate is initially at rest, U is determined to be

2Pm0 ( Bt _ (..L 1)
v mu-m["""’\ e) °% e)]
where
Y a (12)
m

Substituting equation (11) back into equation (8), the reflected wave pressure P, is

determined to be

P, - - B)[(l ()] exp(——é-) 2B exp —-%t)} (13)

13




The total pressure on the face of the air backed plate is the sum of P, and P,.
Combining equations (5) and (13) the total pressure on the face of the panel P, can be

determined by

R s

Note that if the water cavitates or separates from the face of the plate the forces acting
on the plate are reduced to zero and the plate has achieved its maximum velocity. Setting

the total pressure P, equal to zero, the cut off time 6. can be calculated as

0 )
o, - (:T_ 1}.‘.; (1s)

The maximum velocity of the plate can then be determined as

o P8 ( PIB) [ Inp 16)
Vo ™ iy PR~ o )

When analyzing the response of a water backed plate, the quantity p,c, is equal
to pc and P, can no longer be neglected. The equation of motion for the water backed

plate may be written as

14




m%‘fl -P +P, - P, an
Noting that
s = Y _u (18)
Pi¢;  PC

equation (17) may now be expressed as

(
mdl - 2P, exy -_(‘;) - 2Upc a9
\

Solving equation (19) for the velocity of the plate, the following expression is obtained

_ 2Pm6[ (_Zﬂt _ (_i 20)
U mazp™ e) P ]]

Substituting the expression for U back into equation (8), the reflected pressure P, is

determined to be

- 1 o t)_ 2B _ [ 2Bt 21
ik P‘"“[l-zn“"( e) 12p 1\ e)] )

Combining the previous expression with equation (14) allows the pressure on the face of

the panel to be determined as

15
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Note that if B > 1.0, then P, is always positive and cavitation cannot occur on the surface
of the panel.

An attempt has been made to reconcile the plate response predicted by Taylor
plate theory with the observed response of finite circular plates that will be discussed in
more detail in the next section. The resulting expression for the maximum deflection of
the center of the flat circular plate tries to account for the physical constraint at the
boundary, the refraction of the shock wave around the plate and the additional loading of
the plate due to after flow. This expression, which is applicable to the air backed plate
only, is presented below without development.

For a circular air backed plate of radius a, thickness 4, and yield strength o,
mounted in a finite rigid baffle, the maximum deflection of the center of the plate is

determined by [Ref. 3: p. 420]

1
2, - Joud [ 2m pif‘a(hﬂ)i 23)

pc o’h 4

2. Impulse Response of a Flat Circular Plate
The response of rigidly mounted air backed circular metal plates to underwater

shock loading has been of interest for diverse reasons. Circular plates were studied not

16




only as a means of understanding the effects of underwater explosions on surface ships
but also as a means of measuring the force of these explosions using the deflection of
small metal diaphragms. In all cases the response of thin air backed metal plates to
underwater shock loading followed a consistent pattern.

On impact of the shock wave, the plate attempts to move away from the source
of the shock wave with a uniform rigid body motion. The portion of the plate adjacent
to the rigid boundary is immediately restrained. The effect of the boundary restraint is
communicated to the remainder of the plate as a radial elastic tension wave that proceeds
from the plate boundary to its center, propagating at the sonic velocity in the material.

As the plate continues to move away from the source of the shock wave a
plastic bending wave is generated in the material and propagates radially toward the
center at a slower speed. During this time the central portion of the plate continues to
move relatively unimpeded by the remainder of the plate. As shown in Figure 7, as the
bending wave propagates to the center of the plate, the plate achieves the characteristic
shape of a nearly conical surface of revolution. Measurements of the tangential and radial
strains along a radius show that the two strains tend to be nearly equal at each point.

The thickness of the plate shows a marked localized thinning and a subsequent
tendency to shear at the plate boundary. Elsewhere, the thickness shows a gradual taper
from full thickness near the boundary toward the center. At the center of the plate
thinning again becomes prominent and results in a pronounced dimple. (Ref. 8: pp. 164-

168]

17
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Figure 7. Propagation of the Plastic Bending Wave Through a Plate.

Differential equations describing the response of the plate to a distributed
impulse load have been developed [Ref. 8: p. 168-182] but are extremely complex. By
assuming a material that does not work harden and by neglecting the reaction of the
material in the central flat area of the plate, a simplified solution may be developed [Ref.

8: p. 183] in which the velocity of the plastic bending wave may be expressed as

where O, is the yield stress of the material. The displacement of the plate is described
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where U is the velocity of the plate, R is the radial location, a is the radius of the plate

and the quantity c is defined by

Cz- ° (26)

C. COMPOSITE MATERIAL BEHAVIOR

The behavior of plates fabricated from orthotropic materials has been studied using
classical plate theory [Ref. 9: pp. 242,243}, which is limited in application to shock
loading by the restrictions of small deflections compared to the plate thickness and
neglecting out of plane stresses. Additionally, classical plate theory does not address a
fiber-reinforced composite, merely requiring orthotropic behavior. As such, little light can
be shed on the failure mechanism of composite plates or panels.

An observed characteristic of failure in fiber-reinforced composites is that the
components of the composite do not fail at the same time [Ref. 2: p. 33]. If the fiber is
the first component to fail (high strength, stiff fiber and an elastic matrix), then the
composite will undergo sudden and complete rupture. If the matrix fails first (high
strength, elastic fiber and a brittle matrix), then the failure of the composite will initially

show as cracks in the matrix material prior to complete failure of the structure.
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In most composite materials, the strength of the reinforcing fiber is significantly
greater than the strength of the matrix material. For this reason tension is a fiber
dominated process. Specimens placed in uniaxial tension demonstrate a variety of failure
mechanisms prior to the ultimate failure of the material. Matrix cracking and
delamination are among the more detectable of these mechanisms. The loss of continuity
in the material caused by matrix cracking or separation of a lamina results in a
characteristic kink noted in the stress-strain curves for these types of composites. [Ref.
2: p. 33)

Under uniaxial compression, fiber-reinforced composites typically exhibit three

modes of failure [Ref. 2: p. 230]

1. Buckling of the fibers (low stiffness matrices).

2. Transverse breakage due to Poisson’s ratio differences of the material constituents
and non-uniform transverse strain distributions along the specimen length (medium
stiffness matrices).

3. Shearing of reinforcing fibers at an angle near 45° without local buckling (high
stiffness matrices).

Combinations of the three modes are often seen and are accompanied by other phenomena
such as lamina peeling, loss of stability, brooming, and splitting.

Behavior of the composite under the more complex stress states expected during an
underwater shock test is not well understood. While some combination of the effects

noted during uniaxial loading may be expected, the exact nature of the response of the

material and the failure mechanism involved is not known.
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III. EXPERIMENTAL METHODS

A. TEST FIXTURE DESIGN

There were three major considerations that guided the design of the test fixture.

1. The fixture should be substantial enough to withstand several explosions without
significant damage or warping.

2. The test fixture should allow for exposing a large area of the test panel surface to
the explosion.

3. The test fixture size and weight should be within the limits of the handling and
transportation equipment readily available to the Naval Postgraduate School.
Designing structures to be exposed to underwater explosions is at best an art,
relying more often than not on the prior experience of the designer than on any generally
accepted code or rule. Previous underwater shock testing conducted by NPS indicated
that an adequately braced structure constructed from >/, inch thick structural grade steel
plate would posses sufficient strength and stiffness to withstand multiple explosive tests.
With the construction material chosen, the desired size and shape of the test panel and
the limitations of the weight handling equipment at NPS became the controlling
parameters governing test fixture design.
The desire to maximize the exposed surface area of the test panels while
simultaneously limiting the overall weight of the test fixture to approximately 1000

pounds pointed toward using a circular section for the body of the fixture. As shown in
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Figure 8, the final design consisted of a cylindrical shell body three feet in diameter and
eight inches high, upper and lower clamp rings frcr feet in diameter and six inches wide,
eight exterior rectangular gussets supporting the lower clamp ring, and a circular backing
plate three feet in diameter to close off the back of the fixture. A second test fixture was
designed identical to the first with the exception that the backing plate was not included.
All components of the fixtures were fabricated from */, inch thick structural steel plate
except the gussets, which were '/, inch steel plate. Both fixtures were coated with red
primer for corrosion control.

The test plate was positioned in the test fixture by the upper and lower clamp rings.
Shallow recesses were machined into the clamp rings to assist in positioning the test plate.
The lower clamp ring was welded to the upper end of the cylindrical body. The upper
clamp ring was attached to the lower clamp ring by 64 */, inch SAE Grade 7 bolts
arranged in two concentric circles along the outer edge of the clamp rings. The fixture
could accommodate circular test panels 40 inches in diameter and provided an exposed
target arca three feet in diameter.

Two methods were considered for securing the panel in the test fixture. Bolting
through the panel would have provided the best approximation of a fixed boundary
condition. This method was rejected because of the increased costs that machining the
bolt holes in the test panel would have generated and because of concem that the holes
might have caused premature failure in the boundary region of the panel. As shown in
Figure 9, the chosen was to clamp the panel between the upper and lower clamp rings.

This method of securing the panel would allow some motion in the radial direction, but
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Figure 8. General Configuration of the Test Fixture.
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This method of securing the panel would allow some motion in the radial direction, but

the trade-off was considered to be an acceptable means of keeping the panel intact.

(1]

Upper Clamp Ring

Gasket

Lower Clamp Ring

Shell

Figure 9. Clamping Method For the Test Fixture.

B. TEST ARRANGEMENT

1. Test Material Selection
Six circular composite plates , 40 inches in diameter and '/, inch thick, were
obtained for this research. The composite panels were fabricated from a plain weave S-2
glass fabric having equal numbers of fiber rovings running in the warp and fill directions
and a polyester resin matrix. The balanced weave of the S-2 glass fabric provides

equivalent material properties in the two principle directions. Each panel was composed
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of 10 layers of the glass / polyester pre-impregnated mats and was vacuum bag cured.

The panels were produced using three symmetric stacking sequences:

1. [0°/ 90°/ 0°/ 90°/ 0°]s
2. [0°/ 90°/ 45°/ 90°/ 0°]s

3. [0°/ 45°/ 90°/ 45°/ 0°];

Two panels were produced using each stacking sequence. Because of the balanced weave
of the glass fabric the 0° and 90° laminae are structurally equivalent and the $45° laminae
are structurally equivalent.

Additionally, two alloy 6061-T6 aluminum panels with the same dimensions
as the composite test panels were procured. The aluminum panels were used for the
initial two explosive tests. This allowed the test arrangement and data acquisition systems
to be tested against a material with well known properties.

The physical properties of the composite and the aluminum test materials are
summarized in Appendix A.

2. Test Site Arrangement

The overall testing arrangement was coordinated with the West Coast Test
Facility (WCSF) located at Hunter’s Point Naval Shipyard, San Francisco, CA. WCSF
provided a pontoon test barge capable of positioning the test fixture and the explosive
charge. The test barge also located the junction box connecting the leads from the
instrumentation mounted on the fixture and the test panel to the shielded cable leading

back to the data recorders.
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Because of the relatively shallow water depth at WCSF, a vertical arrangement
of the test fixture and explosive charge was not possible. A three point suspension system
was devised that held the test fixture beneath the barge at a depth of approximately 11 feet
wi'th the normal vector of the test panel aligned 30° from horizontal. An A-frame support
projecting from the front of the barge positioned the explosive charge approximately 12 feet
horizontally from the test panel and at a depth of approximately four feet. The location of
the explosive charge was adjustable to maintain a 14 foot stand off normal to the center of
the test panel. A three piece brace fabricated from one inch steel angle beams was used to
hold the fixture at the correct angle and as an additional attachment point for the suspension

cables. Figure 10 provides a representation of the test arrangement.

3. Test Instrumentation
Measurements were desired of several parameters from each of the shock tests.

These included:

1. Surface strains on the test panel.
2.  Shock wave pressure, both free field and at the test panel.

3. Acceleration of the panel center and the test fixture.

Micro-Measurements CAE-13-250UN-350 strain gages were chosen for the
aluminum panels. These gages have a gage length of 0.125 inches and a width of 0.120
inches. The relatively small size of these gages made them a good choice for measuring

the localized strains in an isotropic material. These gages were rated for 5% strain.
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Figure 10. The General Test Arrangement.
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Because of the heterogeneity of the composite panels, larger area strain gages
were required to provide a measure of the average strain at a particular area. BLH
Electronics strain gages FAE-50-35-S13-EL, with a gage length of 0.500 inches and a
width of 0.250 inches were chosen for this application. These gages are also rated at 5%
strain.

The pressure transducers and accelerometers selected for these shock tests were
produced by PCB Piezotronics, Inc. Blast pressure transducers model 138A50 were
chosen to measure the shock wave pressure. These tourmaline crystal element transducers
have a range of 50,000 psi and a rise time of 1.5 microsecond. The accelerometers
chosen were High-Shock Accelerometers model 350A. These accelerometers are
lightweight (4.5 grams) and have a range of 100,000g.

Two data recorders were available for recording the output of the strain gages,
pressure transducers, and accelerometers. A Raycal Storehorse, 14 channel, magnetic tape
Instrumentation Recorder was used to record the output of the strain gages. Output from
the pressure transducers and the accelerometers was recorded on a Honeywell Model 101
magnetic tape recorder. Digitization of the recorded test data was accomplished using a

Hewlett-Packard 9000/300 desk top computer running HPVista Signal Analysis software.

C. TEST PROCEDURE
Two basic types of tests were conducted during this series of experiments: water

backed tests, in which the test panel was exposed to seawater ¢n both the front and back,
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and air backed tests, in which the front of the test panel is exposed to seawater and the
back is exposed to an air space. The water backed tests were designed to investigate the
elastic response of the various test panels, while the air backed tests were designed to
investigate the plastic response and failure mode of the test panels.

A test plan was developed consisting of eight explosions to be conducted in groups
of two shock tests on a given test day. One test each day would be an air backed shock
test and the other would be a water backed shock test. This test plan was modified
during the testing such that both of the last two tests were air backed tests. A temporary
backing plate was welded to the back of the water backed test fixture in order that this
test plan modification might be accomplished.

A brief description of each test and its desired results is listed below.

1. Test No. 1: Test 1 used the aluminum panels as targets for the shock tests. The
purpose of Test 1 was to verify the test arrangement and the data acquisition
system and to gather test data from panels with fairly predictable response. Five
pound charges of TNT were used for this test.

2. Test No. 2: Test 2 used the [0°/ 90°/ 0°/ 90°/ 0°]s set of the composite panels as
targets. The purpose of Test 2 was to investigate the dynamic response and
failure mechanism of a highly orthotropic composite panel. Five pound charges
of TNT were used for this test.

3. Test No. 3: Test 3 used the {0°/ 45°/ 90°/ 45°/ 0°]; set of the composite panels as
targets. The purpose of Test 3 was to examine the response and failure
mechanism of a " quasi-isotropic” composite panels. Ten pound charges of TNT
were used for this test.

4. Test No. 4: Test 4 was designed to utilize the remaining set of [0°/ 90°/ 45°/ 90°/
0°]s composite panels as targets and to provide additional data describing the
response and failure mode of the composite material. One five pound TNT charge
and one ten pound TNT charge were used for this test.
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Each individual shock test was assigned a test identifier consisting of a "T" followed
by the general test number and either an A’ or a "W’ to differentiate between the air
backed and water backed tests. For instance, TIW refers to the water backed test
conducted on the first test day while T3A refers to the air backed test conducted on the
third test day. This nomenclature was utilized when referring to each individual test and
the data it provided.

Each test panel was instrumented with 12 strain gages mounted such that radial and
circumferential strains could be recorded at various locations on the front and back
surfaces of the panel. For Test 1 the strain gages were mounted along three radials
spaced 120° apart as shown in Figure 11. Because of the orthotropic nature of the
composite panels, the strain gage mounting pattern was altered to that shown in Figure 12
and Figure 13 for Tests 2 through 4. A slightly different numbering sequence from that
used in Tests 2 and 4 was inadvertently used for the strain gages of Tes: 3.

Initially, five blast pressure transducers were used for each test. However,
considerable attrition was suffered among the transducers mounted closest to the explosive
charge. By the last test, only three pressure transducers remained operational. Since the
primary uses of the pressure transducers were to verify proper detonation of the explosive
charges and to provide a positive indication of the time of impact of the shock wave with
the test panel, the reduction in the number of transducers did not significantly affect the
testing. The blast pressure transducer locations for Tests 1 through 4 are shown in

Figure 14 through Figure 17 respectively.
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Figure 11. Strain Gage Locations for Test 1.

Accelerometers were mounted on the underside center of the test panel for TIW and
on the underside of the lower clamp ring for T1A, T2W, and T2A. Since mounting the
accelerometer on the panel required tapping a hole approximately half way through the
panel, test panel accelerometers were not used for air backed tests because of the large

deflections expected or for the composite panels because of the unknown effect such a
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Figure 12. Strain Gage Locations for Test 2 and Test 4.

hole might have on the failure mechanism. Use of the accelerometers was discontinued
entirely after Test 2 because of the difficulty in recording valid data.
All instrumentation was applied to the test panels and the test panels were mounted

in the test fixtures at NPS. Silicon sealing compound was applied to the strain gages for
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Figure 13. Strain Gage Locations for Test 3.
during the test, all exposed instrumentation leads were secured to the test plate with the
silicon sealing compound.

The test fixtures were transported to WCSF and suspended beneath the test barge
as shown in Figure 18. Figure 19 shows the barge and test fixture being lifted by crane

and lowered into the bay. The barge was positioned away from the pier by winches.
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Figure 14. Pressure Transducer Locations for Test 1.

Once in position, the explosive charge was attached to the barge and atmed by WCSF
staff. Detonation of the charge was initiated from the pier. The two data recorders were
started approximately 20 seconds prior to detonation to allow the tape speed to stabilize.
Following the tests, the data recorders and tapes were returned to NPS where the
transverse displacement of the test panels was measured and the recorded test data was

digitized and displayed.

D. PREDICTED RESULTS
Two types of response were predicted for the panels tested. The water backed

panels were not anticipated to demonstrate any perianent deformation due to the shock
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waves. The inclusion of the water backed tests was primarily to provide data on the
elastic response of the various test panels. It was anticipated that the air backed panels
would react significantly to the shock wave and would provide the most useful data for

reconstructing the response and failure mechanisms of the panels.

Tgst
PG5 O Fixture
PG-1
? PG-3
O 4|ﬂ: Q
Explosive O 9 ft
Charge PG-2 |
14 f¢
PG-4
16 ft

Figure 15. Pressure Transducer Locations for Test 2.

The predicted response of the air backed panels was determined using the infinite
plate and finite plate models discussed in Chapter Il. Using an assumed value of the
density of seawater of 1.996 slugs per cubic foot and an assumed velocity of sound in
water of 4900 feet per second, the predicted maximum plate velocity, maximum plate
deflection, and velocity of the plastic bending wave across the plate were determined.
Table II provides the results of preliminary calculations using equations (1), (2), and

(12). The response of the air backed panels was determined from equations (15), (16),

35




(23), (24), and (25). Since no yeild strength data was available for the composite
material, the ultimate tensile strength was utilized when the bending wave velocity and
the transverse deflection of the center of the panel were calculated. The values that
resulted were felt to represent an upper bound for these measurements in the composite
material.

Table IL. Preliminary Shock Wave Parameters.

6.35x10°

4.50x10°°

4.50x10°
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Table III. Predicted Response of the Air Backed Test Panels.

Infinite Plate Model Finite Plate Model
R — e

Explosive .
Material | Weight 0 U 7 Bw"“d“ave‘g
Ibf msec Y o in Velocity

Aluminum 5 0.0312 | -10719 | -1.127 -12549

Composite

Test
PG4 Qe
PG-1 PG-2
® 0 0
4f oft
Explosive
Charge
|
14 ft
PG-3 O
]
156 ft

Figure 16. Pressure Transducer Locations for Test 3.
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Figure 17. Pressure Transducer Locations for Test 4.
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Figure 18. Test Fixture Suspended Beneath the Test Barge.
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Figure 19. Placing the Barge and Test Fixture in the Bay.
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IV. RESULTS

The eight shock tests of this test series were conducted as planned. A complete set
of the resulting data is included in Appendices B and C. The data from the test
instrumentation was recorded at a tape speed of 120 inches per second, the fastest tape
speed available on the data recorders. When the data was downloaded and digitized using
the HPVista software the slowest tape speed, 1'/, inches per second, was used to improve
the resolution of the data. The HPVista software did not provide a capability to manipulate
the time scale to account for non-real time processing of data. As indicated on the resulting
data plots, all time scales must be divided by a factor of 64 to determine the actual elapsed
time. For example, a plot of strain against elapsed time that has an indicated range of 960
msec would actually cover 15 msec of data in real time.

During digitization, all of the strain gage data was filtered to a band of 0 - 12,800 Hz
with the exception of strain gage data from T1A, which was filtered to a band of 0 - 25,600
Hz. The filtering is automatically accomplished by the HPVista software and is a function
of the session length and data block length selected. These parameters were adjusted to
remove the high frequency and noise components of the signal without significantly
effecting the magnitude or the form of the signal. The trigger signal for TIA was lost
seconds prior to the detonation of the explosive. Fortunately, the high voltage used to set
off the detonator produced an electromagnetic pulse that was recorded on the data channels.

This firing pulse was used instead of the trigger signal to initiate downloading and
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digitization of the data from T1A. The firing pulse was present when the data was reduced
using the 0 - 25,600 Hz band but was invisible to the HPVista software when the data was
reduced using the 0 - 12,800 Hz band. This necessitated the use of the different frequency
band for T1A. All of the pressure data was digitized using a frequency band of 0 - 51,200
Hz. The higher frequency band was necessary in order to capture the higher frequency
components that make up the pressure signal.

The firing pulse that proved so useful in reducing the strain data caused problems in
the pressure and acceleration data. The effect of the pulse had not decayed away by the
time the shock wave reached the pressure transducers closest to the explosive charge and
the pressure signal is imposed on the transient from the firing pulse. By the time the shock
wave reached the test fixture the firing pulse had decayed away and the data recorded from
these transducers was unaffected. The firing pulse transient had a more significant effect
on the accelerometers. Here the transient totally masked the signal from the accelerometers.
Several test equipment and test procedure modifications were made over the course of the
test program to eliminate the firing pulse transient. Some improvement was noted in the
pressure data, but the accelerometers remained sensitive to the transient. For this reason the
use of the accelerometers was discontinued after Test 2.

The following sections summarize and discuss the data collected.

A. PEAK PRESSURE AND PERFORMANCE OF THE EXPLOSIVE
The performance of the explosive charges was determined by comparing the predicted
maximum shock wave pressure calculated using equation (1) with the peak pressure values

measured by the blast pressure transducers. Some variance between the predicted and
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measured peak pressures was expected due to slight differences in charge density and due
to aging effects on the explosive. Additionally, equation (1) was developed based on the
detonations of spherical charges. The explosive charges used in this test series were
cylindrical charges fabricated with the diameter of the cylinder approximately equal to the
length of the cylinder so as to approximate the size of a similar spherical charge as close
as possible.

As shown in Figure 20 and Figure 21 the measured maximum pressures at each
pressure transducer were in good agreement with the predicted pressures of equation (1)
with the exception of the peak pressures recorded by transducer number three for Test 1.
The indicated stand off distance for this transducer is ten feet. A review of the pressure
history plot for this transducer indicated that approximately 1.6 msec elapsed before the
arrival of the shock wave. Using a nominal value of 4900 feet per second for the speed of
sound in water, the calculated stand off distance for this transducer was determined to be
7.84 feet. The large discrepancy between the calculated and measured peak pressure for
transducer number three in Test 1 was most likely due to an error in positioning the
transducer.

During Tests 2 and 3, some problems were noted due to the rapid deterioration of the
connecters that attached the pressure transducers to the data collection system. Repeated
exposure to the shock from underwater explosions caused the connecters to loosen slightly.
Use of the transducer during subsequent tests resulted in the generation of high magnitude
electrical noise as the instrumentation wiring was buffeted about in the wake of the shock

wave. Since the noise is only evident after the shock wave has passed the transducer, it
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Figure 20. Comparison of the Peak Recorded Pressures with the Predicted Pressure Trace
for the Five Pound TNT Charges.

does not interfere with determining the time of arrival of the shock wave or with
determining the peak pressure of the shock wave at the transducer. This problem was
finally overcome for Test 4 by totally replacing the pressure transducers and refurbishing

the connecters.

B. OBSERVED EFFECTS ON THE TEST PANELS
Following each shock test a visual inspection of each test panel was conducted while
it was still mounted in the test fixture. Items that were checked included the status of all

accessible panel mounted instrumentation and any evidence of plate failure such as plastic
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Figure 21. Comparison of the Peak Recorded Pressures with the Predicted Pressure
Trace for the Ten Pound TNT Charges.

deformation or plate rupture. Additionally, the composite panels were checked for signs of

delamination, glass fiber breakage or matrix failure.

1. Water Backed Plates
The water backed test panels showed little or no damage from the underwater
explosions regardless of the charge weight used. As shown by Figure 22 the aluminum
plate of test TIW was unaffected by the shock wave produced by five pounds of TNT. No
noticeable deformation was noted in the composite plates subjected to the shock from five
pounds of TNT in test T2ZW and to the shock from ten pounds of TNT in test T3W. The
most significant effect on the water backed panels was noted in the composite panel from

test T2W. A crescent shaped internal delamination located at the top of the panel was
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visible when the panel was back lighted. From the shape and location of the delamination,
it appeared to have been caused by a trapped air bubble that allowed that section of the
panel to flex more than the water supported sections surrounding it. The water backed test
fixture vents that were supposed to allow air to escape from behind the test panel were
carefully inspected and verified clear prior to test T3W. No delaminations were found in
the composite panel following that test even though a ten pound charge was detonated. The

composite panels used in test T2ZW and T3W are shown in Figure 23 and Figure 24.

2. Air backed Plates

As anticipated, the effect of the underwater explosions was much more
pronounced on the air backed panels than on the water backed panels. The aluminum test
panel of test T1A, shown in Figure 25, exhibited a conical shape following the shock wave
from the five pound charge of TNT. All of the composite panels used in the air backed
tests T2A, T3A, T4A-1, and T4A-2 showed significant permanent transverse deformation
and localized rupture of the matrix material.

The composite panels of the five pound charge tests, T2A and T4A-1, exhibited
an appearance similar to the aluminum panel of T1A but were not as obviously conical
shaped. As shown in Figure 26 and Figure 27, each of the panels had generally radially
oriented narrow strips of localized matrix rupture that appeared to initiate at the outer edge
of the panel and to propagate toward the center of the panel. The fiber rovings in these
regions of matrix failure appeared to have buckled away from the central layers of the
panel. An edge on view of each of the failure regions showed that the matrix failure

occurred at an angle to the thickness of the panel as illustrated by Figure 28. The visual
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Figure 22. The Aluminum Panel From Test T1W.

evidence suggests that the brittle matrix material failed due to excessive compressive stress
imposed in the circumferential direction.

The composite panels subjected to the shock wave from the ten pound charges
used in tests T3A and T4A-2 deflected to such an extent that one edge of the panel was

pulled free of the clamp rings. When this occurred the panels were forced into the bottom
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Figure 23. The [0°/ 90°/ 0°/ 90°/ 0°); Composite Panel From Test T2W.

of the test fixture. Figure 29 shows the test panel from T4A-2 while still in the test fixture.
One mode of failure for these panels was still the radially oriented strips of localized matrix
rupture apparently due to compressive stresses in the circumferential direction. Superposed

on this failure mode was a second mode consisting of generalized
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Figure 24. The [0°/ 45°/ 90°/ 45°/ 0°]; Composite Panel From Test T3W.
delamination of the panel due to the severe bending and folding of the panel when it was
forced into the bottom of the fixture.
As shown in the detailed photographs found in Appendix B of the damaged
areas, glass fiber breakage in all of the composite panels was minimal. The primary

locations for fiber breakage were on the panels from T3A and T4A-2 where the composite
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Figure 25. The Aluminum Panel From Test T1A.

panels were constrained from bending by the portion of the panel that stayed within the
clamp rings. A small amount of breakage was also found at the outer end of the radial

matrix failures on the panels used for the five pound charge air backed tests.
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Figure 26. The [0°/ 90°/ 0°/ 90°/ 0°]; Composite Panel From Test T2A.

C. TRANSVERSE DISPLACEMENT OF THE TEST PANELS
Following each shock test the final transverse displacement of each test panel was
measured relative to the panel center prior to removing the panel from the test fixture. A

dial depth gage and rigid track. pictured in Figure 30, were used to take the measurements.
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Each panel was traversed several times along different diameters to give a more complete

picture of the pattern of displacement.

Figure 27. The [0°/ 90°/ 45°% 90°/ 0°]s Composite Panel From Test T4A-1.

1. Aluminum Panels
The final transverse displacement of the aluminum panels used in tests TIW and

T1A are shown in Figure 31 and Figure 32. The displacement pattemn for both cases is
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symmetric about the center of the panel. The water backed panel of TIW was essentially
undeformed by the explosion. It was unclear whether the 0.2 inch deflection measured
along the 120° traverse at the center of the panel represented a permanent distortion of the
panel or was caused by hysteresis in the radial motion of the panel edge due to interference

from the gasket material.

it
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Figure 28. Edge View of a Matrix Failure.

The measurements of the final transverse displacement of the air backed panel
from T1A were more definitive. The center of the test panel was displaced approximately
2.4 inches by the explosion. The resulting shape of the panel closely approximates the
conical surface of revolution typical of the response of air backed metal panels to

underwater explosions.
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Figure 29. View of the Test Panel From T4A-2 Immediately Following the Test.

2. Composite Panels
The final transverse displacements of the test panels from tests T2W and T3W
are shown in Figure 33 and Figure 34. Measurements indicated that the panel from T2W
had a maximum permanent deflection of 0.12 inch at the panel center. This panel had

suffered an internal delamination in the upper portion of the panel due to the effects of an
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air bubble trapped behind the plate. The small transverse displacement of this plate was

judged to be a result of the internal delamination. The panel from T3W which was exposed

to the shock produced by the detonation of ten pounds of TNT had negligible permanent

transverse displacements.

Figure 30. Measuring Final Transverse Displacement with the Dial Depth Gage.

No transverse deflection measurements could be taken from the test panels used
for the ten pound charge tests T3A and T4A-2. The final transverse displacement of the
panels from T2A and T4A-1 are shown in Figure 35 and Figure 36. The peak deflection
measured at the center of the panel from test T2A was 0.75 inches . The deflected shape
of the panel was generally symmetric about the center of the panel. It approximated a

surface of revolution, but appeared to be more parabolic than conical in shape. The

35




maximum permanent deflection of the panel from T4A-1 was 1.26 inches. The deflected
shape was skewed to one side so that the maximum deflection occurred at a point three

inches to the left of the center of the panel on the 0° traverse.
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Figure 31. Final Transverse Displacement for the Aluminum Panel From Test TIW.

D. TEST PANEL STRAIN HISTORIES

Two presentations were made of the strain history data from each strain gage. The
first was a long time strain history running for 250 msec. This presentation was useful for
determining if any permanent deformation of a panel had occurred and for illustrating the
long term reaction of the panel. The second presentation represented 15 msec of
information and was useful for determining the response of the panel immediately after the

impact of the underwater shock wave. The strain gages mounted on the test panels were

56




wired such that a concentrated static load applied at the center of the panel resulted in a

positive deflection in the output of the strain gage. Under this loading condition and for the

mounting locations used in this test series the strain gages on the upper surface of the panel

were in compression while the strain gages on the lower surface of the panel were in

tension. For this reason a positive deflection in the strain histories for strain gages 1

through 10 represented compression while a positive deflection in the strain histories for

strain gages 11 and 12 represented tension.
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Figure 32. Final Transverse Displacement for the Aluminum Panel From Test T1A.

1. The Aluminum Test Panels

An examination of the long time strain gage data from the water backed

aluminum panel of test TIW revealed that the peak recorded strains were much less than
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the 1 0.8% strain band allowed for in the data recorders. The peak transient strain recorded
was 0.25% compression at strain gage 12. Most of the strain gages exhibited negligible
strain with the exception of strain gage 8 which recorded a residual strain of 0.06%
compression and strain gage 10 which indicated a 0.02% compressive residual strain. These
residual strains are small, but appear to agree with the small trangverse deflections noted for
the center of the panel. In general, The radial strains measured appeared to be twice the

circumferential strain at the same location.
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Figure 33. Final Transverse Displacement for the [ 0°/ 90°/ 0°/ 90°/ 0°}y Composite Panel
From Test T2W.

From examination of the pressure history for this test, the time of impact was
3.07 msec after detonation. The most violent response of the plate was completed by 25

msec and after 50 msec since detonation had passed the plate appeared to be oscillating
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about its new rest position. The frequency of these oscillations, determined from the strain

histories, varied between 11.69 Hz and 13.1 Hz.
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Figure 34. Final Transverse Displacement for the [ 0°/ 45°/ 90°/ 45°/ 0°]; Composite Panel
From Test T3W.

Analysis of the short time strain data provided little additional information.
System noise levels were only slightly less than the signal for some of the strain gages,
making interpretation of the data difficult. Additionally there was an anomalous signal,
which appeared to be an artifact of the firing pulse, that appeared at 0.07 msec. From shock
wave impact at 3.1 msec until approximately 10.5 msec, the short time strain data attested
to the elastic nature of the strain. At 10.5 msec most of the strain gages recorded a period
of relatively constant strain that appeared to approximate the final residual strain observed

in the long time strain presentation. The response of the panel from test TIW can best be

59




characterized as primarily elastic with possible small amounts of plastic deformation in the

central region of the panel.
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Figure 35. Final Transverse Displacement for the [ 0°/ 90°/ 0°/ 90°/ 0°] Composite Panel
From Test T2A.

The air backed aluminum panel of T1A provided more useful data for analysis.
Reviewing the long time strain history data showed that strain gage 1, located at the center
of the panel, over ranged almost immediately after impact of the shock wave. At some
point during the test, strain gage 1 was ripped from the surface of the panel and torn free
from its wiring. As the bare wires were buffeted about during the test large magnitude
fluctuations in the recorded signal were produced. These fluctuations were carried over into
the signals recorded for other strain gages as large magnitude spikes. Strain gages 4 and

8 failed later in the test and also caused spikes to appear on some of the other strain
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channels. Comparison of the good strain channels with the traces from strain gages 1,4,and
8 allowed these spurious spikes to be discomﬁed when reviewing the data. The maximum
recorded permanent strain for TIA was 0.46% tension at strain gage 2. Strain gage 7
followed closely with 0.35% strain compression. The permanent strain in the radial
direction appeared to be largest toward the center of the panel while the largest magnitude
of the circumferential strain occurred at the boundary. In general, the circumferentially
oriented strain gages recorded permanent strains that were compressive and the radially

mounted strain gages recorded permanent strains that were tensile in nature.
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Figure 36. Final Transverse Displacement for the [ 0°/ 90°/ 45°/ 90°/ 0°]; Composite Panel
From Test T4A-1.
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Examination of the short time strain histories from T1A provided clues to the
behavior of the panel during the period immediately following the impact of the shock
wave. Shock wave impact was distinct enough to allow determination of the time of impact
directly from the short time strain histories. As in T1W, the shock wave arrived at 3.1
msec. Initially, all of the radially mounted strain gages, numbess 1, 2, 4, 6, 8, 10 and 12,
recorded a tensile strain caused by the initial interaction of the boundary with the panel.
As shown in Figure 37, strain gage 7, the outer most circumferentially mounted strain gage,
registered a compressive strain simultaneously with the shock wave impact. This
compressive strain increased almost linearly with time to a maximum of 0.62% compressive
strain at approximately 8.3 msec. From this peak the strain decreased to the vicinity of
0.35% strain where it oscillated for about 50 msec before stabilizing at this value of residual
strain. The output of the strain gages 5 and 9, located at 10 inches from the center of the
paael, also exhibited a peak compressive strain at approximately the same time. The strain
peaks at 8.3 msec were interpreted to mark the point of maximum tiansverse extension of
tt : panel.

Examination of the radially mounted strain gages provided information on the passage

- of the plastic bending wave through the panel. As shown in Figure 38, evidence of the
p'astic bending wave first appears on strain gage 6. The tensile strain produced at shock

w ave impact at 3.1 msec is abruptly reversed at approximately 3.2 msec. The strain reversal

was due to the relatively short radius of curvature of the bending wave. This placed the

upper surface of the panel in radial compression. As the bending wave passed strain gage

6 the compressive strain was relieved as the radius of curvature increased. The bending
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Figure 37. Time of peak Transverse Extension for Test T1A.

wave arrived at strain gages 4 and 10, located ten inches from the panel center, at 3.5 msec
and arrived at strain gages 2 and 8, located five inches from the panel center at 3.9 msec.
Permanent radial strain was maximum near the center of the panel, probably as a result of

the slight thinning of the material in the central region of the panel characteristic of metal

panels deformed by underwater shock.

63




T1A SG-6 % Strain vs Time ¢ . G o>
1
) |
% Strain jy- B - A —— —
1.0 ; _
0.0 '3 2 msec Time (msec) 15.0
T1A SG-4 % Strain vs Time
L4 " SG 4)
% Strain "A\7A/ &‘L ~ Rl ——
- R 1
' ¥
H T
10— ' =
. '3.5 msec ime {msec) 15.0
‘o T1ASG-2 % Strain vs Time ¢ . 5G 2)
% Strain PL #v“} e ~
v — ~
1 /£ R o [
)
1.0 1 . _
0.0 ' Time (msec) 15.0
*3.7 msec

Figure 38. Progress of the Plastic Bending Wave for Test T1A.

2. The Composite Test Panels

| Comparison of ihe strain histories from the water backed composite panels of
tests T2W and T3W with the response of the aluminum panel from T1W showed many
similarities. As with TIW, the most vigorous response of the panels to the shock wave

occurred in the period from impact to 50 msec. After 75 msec had elapsed, most of the




high frequency components of the response were gone and the panels were exhibiting a
decaying low frequency oscillation. the best estimates of the frequency of this oscillation
that could be determined from the strain histories were between 12.67 Hz and 14.3 Hz for
T2W and Between 10.0 Hz and 10.9 Hz for T3W.

The permanent deformation of the panel from T2W that was noted in the
transverse deflection of the panel could not be verified from the strain history data. Strain
gage 8,which was ideally placed to measure the strain associated with the transverse
deflection, failed when the test fixture was lowered into the water. The strain history for
strain gage 9 are still oscillating at the end of 250 msec, but appear to be tending toward
zero strain. The long time strain histories for the composite panel from T3W indicated no
residual strain and verified the finding of no permanent transverse deflection.

Contrasting the behavior of the two composite panels revealed little difference
between the panel from T2W (five pound TNT charge, [0°/ 90°/ 0°/ 90°/ 0°] lay up) and
the panel from T3W (ten pound TNT charge, [0°/ 45°/ 90°/ 45°/ 0°); lay up) other than in
the magnitude of the strains measured. Surprisingly, the overall strain levels for T2W,
which used a five pound TNT charge, are greater than the overall strain levels for T3W,
which used a ten pound TNT charge. Reviewing the pressure histories for these two tests,
the peak pressure at the test panel was 1900 psi for T2ZW and was 2100 psi for T3W.
Given that the peak pressures for the two tests were relatively close, the presence of an air
bubble behind part of the panel from test T2ZW (as discussed in section IV.B) might have
allowed larger deflections of the panel that would have resulted in larger strain

measurements. Additionally. the quasi-isotropic nature of the panel from T3W may have
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allowed a better distribution of the strain across the panel than the orthotropic panel from
T2W and resulted in lower recorded strain levels.

Review of the long time strain data from the air backed tests T2A and T4A-1
showed an initial response to the shock wave that was similar to that demonstrated by the
aluminum panel from T1A. In T2A, most of the High frequency components of the strain
history were attenuated in the time between impact and 75 msec. The remaining low
frequency response exhibited a very long period of between 106 msec and 135 msec as
measured on the strain histories. This corresponded to a frequency between 7.4 Hz and
9.4 Hz. The response of T4A-1 was more chaotic. The high frequency components of the
strain history are not attenuated until after a total elapsed time of 100 msec. The long term
response of the strain gages after 100 msec did not exhibit a recognizable cyclic pattern as
did the strain histories for T1A and T2A.

The residual strain for the panel from T4A-1 was greater than the residual strain
for the panel from T2A as was expected after comparing their relative transverse deflections.
Their appeared to be little correlation between the magnitude of the strains and the location
of the strain gage for either test. Even strain gages mounted at the same location but on
opposite sides of the panel did not corroborate each other in all cases.

The short time strain histories from T2A were compared to the corresponding
strain histories from T1A. An attempt to overlay the pattern of failure noted in T1A met
with limited success. As shown in Figure 39, what appeared to be the corresponding
phenomena in the composite material of the plastic bending wave in the aluminum can be

seen arriving at strain gage 6 at a total elapsed time of 2.8 msec, strain gages 4 and 10 at
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3.24 msec, and strain gages 2, 8 and 12 at 3.95 msec. Next, the circumferentially mounted
strain gages were examined to determine the time to peak transverse extension. As shown

in Figure 40, strain gage 7 exhibited a peak at 5.05 msec that appeared to represent

maximum transverse extension. Unlike T1A, none of the other circumferentially mounted

strain gages corroborated this time.
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Figure 39. Progress of the Bending Wave for Test T2A.
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Figure 40. Time of Peak Transverse Extension for Test T2A.

The short time strain histories of T4A-1 told much the same story as those from T2A.
The path of the bending wave from boundary to panel center could be tracked as it arrived
at strain gages 4 and 10 at a total elapsed time of 3.69 msec and at strain gages 2 and 8 at

4.38 msec. Strain gage 6 had failed prior to the test. When the output of the
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circumferential strain gages was reviewed no clear indication of the time of maximum
transverse extension was evident.

The data discussed in this section, along with the measured transverse deflection
of the air backed panels, was used to calculate values for the average panel velocity, U,,,,
and the nominal speed of the plastic bending wave. The results of these calculations follow
in Table IV.

Table IV. Calculated Response of the Air Backed Panels From T1A, T2A, and T4A-1.

Explosive
Test Material Weight s
Ibf

Aluminum 5

Composite 5 0.75 3275 |  -8,696

Composite 5 1.26 - -7246
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V. CONCLUSIONS AND RECOMMENDATIONS

A. WATER BACKED TESTS

Within the limits of the charge weights used, neither the aluminum panel nor the
composite panels used in the water backed tests exhibited a great deal of sensitivity to the
size of the explosive charge. With the exception of test T2W, all of the panels behaved in
a primarily elastic manner and exhibited no indications of impending failure.

The composite panel used in test T2W was determined to be a special case. Although
the presence of an air bubble behind the panel at the time of the test could not be proven,
the evidence certainly suggested this possibility. The only other reasonable explanation for
the localized interior delamination noted in this panel was a preexisting flaw in the panel
that was exacerbated by the underwater shock. Steps were taken in the follow on water
backed test to ensure that the test fixture vents were clear. Additionally, all of the panels
nsed in the remaining tests were inspected for possible internal flaws by shining a bright
light behind the panel and then searching for shadows in the translucent composite material.
In ecither case, the phenomena was not repeated in the follow on water backed tests even
though a larger explosive charge was used.

The two extremes of the composite panels were tested during the water backed test
sequence. The panel from T2W represented the most orthotropic lay up of the panels

tested. The panel from T3W represented the most isotropic of the composite lay ups tested.
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Even though subjected to the more severe shock, the panel of T3W appeared to distribute

the resulting strain more evenly than the panel from T2W.

B. AIR BACKED TESTS

The air backed tests provided the most useful information from this investigation. The
residual transverse deflection of the aluminum panel from T1A gave evidence that the
aluminum panel was responding in much the same manner as the steel panels had during
the postwar experiments. The strain histories for this test provided an example of how the
dynamic processes occurring in the panel would appear in terms of the radial and
circumferential strains. The plastic bending wave that appeared was well documented in
the postwar testing tests. The circumferential compressive strain, aithough mentioned in the
historical results, appeared to be exacerbated by the chosen boundary conditions that
allowed motion of the boundary in the radial direction.

It was anticipated that the composite air backed test panels would try to respond to
an underwater shock in the same manner as the aluminum panel. Two properties of this
composite material had the potential to disrupt or disguise the response of the air backed
panels. The high tensile strength of the glass fabric and the brittle nature of the matrix
material made it unlikely that the plastic bending would be as sharply defined as in the
aluminum panel

The transverse deflection measurements of the panels from T2A and T4A-1 indicated
that both of the panels were tending to respond in the same manner as the aluminum air
backed panel. The measured deflection of the composite panels was less than the deflection

for the aluminum panel for two reasons. First, because the density of the composite
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material is closer to that of water than is the density of the aluminum, less of the available
energy of the shock wave was absorbed by the composite panels. Secondly, as the panel
deflects out of the horizontal plane, tensile membrane stresses were generated in the radial
direction that resisted the continued defiection of the panel. The composite material is very
strong under tensile loading and resisted any permanent deformation in the radial direction.
As anticipated the composite panels lacked the sharply defined shape of the aluminum panel
due to the minimal plastic deformation allowed by the material. On the other hand, the
brittle nature of the matrix material resulted in significant local matrix failure apparently
under the action of the compressive circumferential strain.The strain histories for these
panels clearly show the passage of a bending wave analogous to the plastic bending wave
of the aluminum panel. The data obtained from the circumferential strain gages, which in
the aluminum panels showed the time to peak transverse deflection quite clearly, were
inconclusive for the composite panels. This was the probable result of the stress relief in
the circumferential direction that accompanied the radially oriented local matrix failures
experienced by the air backed composite panels.

A comparison of the predicted response with the actual response of the air backed test
panels from T1A, T2A, and T4A-1 provides several interesting observations. The actual
transverse deflection of the center of the panels was approximately twice the deflection
predicted by the infinite plate model using equation (23), but was significantly less than the
deflections predicted by the finite plate model in equation (25). The bending wave velocity
predicted by equation (24) for the aluminum plate was within 12% of the velocity

determined from th= short time strain histories for TIA. The calculated bending wave
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velocity for the composite panels was very high and not comparable to the w.casured
velocities In T2A and T4A-1. Some strength comparable to the yield strength for metals
(perhaps the first ply failure strength) must be determined and used in the calculation of
oending wave velocity before valid predictions can be made.

As expected the predominant failure mechanism of the aluminum panel of test T1A
was plastic deformation of the material that resulted in a permanent transverse deflection
of the panel. The observed failure mechanism of the composite panels from tests T2A and
T4A-1 was primarily localized matrix failure induced by exceeding the compressive stress
limit of the matrix material. It must be stressed that the boundary conditions under which
these tests were conducted played a large role in determining the failure mode. In particular
the allowed motion of the panels in the radial direction appeared to be a significant
contributor to the observed failure mode of the composite panels. Different boundary

conditions may result in significantly different failure modes.

C. RECOMMENDATIONS

The following recommendations are presented as possible directions of future study:

1. The general trends and failure mechanisms identified by this report should be
compared to the results predicted by several finite element models for composite
materials. Modifications may be evident that could improve the predictive ability
of these models.

2. Boundary conditions played such a central role in the response of the composite
panels that additional tests should be conducted to determine the effects of other
boundary conditions on the response of the panel. Of particular interest woulkl be
the effect that truly fixed boundaries or non-circular boundaries would have on the
response of the composite material.
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Propagation of the radially oriented matrix failures in the panels from tests T2A and
T4A-1 appeared to have a significant effect on the measured strain values in the
same vicinity. Stimulating this response on a more densely instrumented sample
may shed light on this phenomena.

Fabricate composite test panels with strain gages imbedded in the panel. Similar

tests could then be conducted to investigate the distribution of normal strain and
interlaminar shear strain across the thickness of the composite panel.
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APPENDIX A: MATERIAL PROPERTIES

PROPERTY

Modulus of Elasticity (psi),
E,
E,
Poisson’s Ratio,
VY*
vﬂ

Vay

Fiber Tensile Strength (psi),
out. fiber

Tensile Strength (psi),
Ou

Compressive Strength (psi),

Ouc
Yield Strength (psi),

c)’
Density (Ibf sec? in™*),

o]

Resin Content (% by Weight)

M [Ref. 10: pp. 6-10]
@ [Ref. 11: p. 64]

® [Ref. 12: pp. 3,4
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ALUMINUM

10.6x10°
10.6x10°

033 ®
033®
033 ®

N/A

4.5x10°

45x10°

40x10° ™

2.54x10* ©

N/A

COMPOSITE

2.87x10° @
7.10x10° @

0.091 @
0250 @
0.368 @

1.80x10° @

7.20x10* @

1.8x10* @

N/A

1.80x10* @

32+3@




APPENDIX B: PHOTOGRAPHS OF PANEL DAMAGE

The following photographs detail the damage inflicted on the aluminum and composite

panels from tests T1A, T2A, T3A, T4A-1, and T4A-2.

Figure 41. Side View of the Aluminum Panel From Test T1A.
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Figure 43. Detail From the Lower Left Quarter of the Panel From T2A.
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Figure 44. Detail of the Lower Right Quarter of the Panel From T2A.
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Figure 45. Detail of the Right Quarter of the Panel From T2A.
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46. The Composite Panel From Test T3A.
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Figure 48. Detail of the Lower Quarter of the Panel From T3A.
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Figure 50. Detail of the Left Quarter of the Panel From T4A-1.
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Figure 52. Detail of the Right Quarter of the Panel From T4A-1.
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Figure 53. The Composite Panel From Test T4A-2.
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Figure 56. Detail of the Upper Right Quarter of the Panel From T4A-2.
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APPENDIX C: PRESSURE AND STRAIN HISTORIES

The following plots represent the pressure history and strain history data collected
during each of the eight tests of this series. As discussed previously, the data acquisition
software used was unable to manipulate the scaling of the time axis to represent non-real
time data streams. For this reason, the time scales indicated on the plots must be divided
by a factor of 64 to determine the real elapsed time.

The notation used on the plots that follow requires some explanation. The tests are
differentiated using the notation discussed previously, i.e., the water backed test conducted
on the first test day is denoted TIW. Strain gages are denoted by 'SG’ followed by the
strain gage number for the test. Diagrams showing the locations of the strain gages are
included prior to the data for each major test. Pressure transducers are denoted by 'PG’
followed by the transducer number. Refer to the chapter on experimental methods for the
locations of the pressure transducers. As a final reminder, for each test a positive value of
strain on strain gages number 1 through 10 denotes compression. a positive value of strain

on strain gages number 11 and 12 denotes tension.
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